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Abstract

The spatial distribution and scale-dependence of the very-short term predictability of
precipitation by Lagrangian persistence is studied under different flow regimes in con-
nection with the presence of orographic features. Data from the weather radar com-
posite of eastern Victoria, Australia, a 500 km×500 km domain at 10 min temporal and5

2 km×2 km spatial resolutions, covering the period from February 2011 to October
2012, were used for the analyses. The scale-dependence of the predictability of pre-
cipitation is considered by decomposing the radar rainfall field into an 8-levels multi-
plicative cascade using a Fast Fourier Transform. The rate of temporal development of
precipitation in Lagrangian coordinates is estimated at each level of the cascade under10

different flow regimes, which are stratified by applying a k-means clustering algorithm
on the diagnosed velocity fields. The predictability of precipitation is measured by its
lifetime, which is derived by integrating the Lagrangian auto-correlation function. The
lifetimes were found to depend on the scale of the feature as a power law, which is
known as dynamic scaling, and to vary as a function of flow regime. The lifetimes also15

exhibit significant spatial variability and are approximately a factor two longer on the
upwind compared with the downwind slopes of terrain features. The scaling exponent
of the spatial power spectrum also shows interesting geographical differences. These
findings provide opportunities to perform spatially inhomogeneous stochastic simula-
tions of space-time precipitation to account for the presence of orography, which may20

be integrated into design storm simulations and stochastic precipitation nowcasting
systems.

1 Introduction

The scale-dependence of the predictability of atmospheric flow was already studied
by Lorenz (1969), who found that there is an intrinsic predictability limit associated to25

each scale of motion. Similar conclusions can also be extended to the predictability of
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precipitation, in particular if considering rainfall fields as emerging from multiplicative
cascade processes (Schertzer and Lovejoy, 1987; Marsan et al., 1996).

The intuition that large scale precipitation features are more predictable than small
scale features can be easily verified empirically using both Lagrangian persistence
of radar precipitation patterns and outputs from numerical weather prediction (NWP)5

models. Zawadzki et al. (1994) found that the decorrelation time of radar precipitation
patterns by Lagrangian persistence is dependent on the degree of spatial smoothing.
Grecu and Krajewski (2000) also detected that the predictability depends on precipita-
tion intensity, the most intense rain rates being less predictable. Seed (2003) studied
the scale-dependence of the predictability of precipitation by Lagrangian persistence10

using a Fast Fourier Transform (FFT) to decompose the radar rainfall field into a multi-
plicative cascade. Turner et al. (2004) employed a wavelet-based decomposition to filter
out the unpredictable scales of a radar-based extrapolation technique. Wavelet decom-
positions were also exploited for the scale-dependent verification of NWP precipitation
forecasts to account for the loss of predictability at small scales (e.g. Casati et al.,15

2004; Bousquet et al., 2006). Sinclair and Pegram (2005) applied an Empirical Mode
Decomposition to iteratively decompose the precipitation field into meaningful physical
structures from the high to the low frequencies. Surcel et al. (2014) used a Discrete
Cosine Transform to study the filtering properties of ensemble averaging and discov-
ered that the ensemble members are completely decorrelated below a certain cutoff20

scale.
The multifractal and scale-dependent nature of rainfall does not only complicate the

study of its predictability and the verification of forecasts, but also demands for more
sophisticated forecasting and downscaling techniques. The Short-Term Ensemble Pre-
diction System (STEPS; Seed, 2003; Bowler et al., 2006) is a stochastic precipita-25

tion nowcasting scheme which exploits the multifractal principle by decomposing the
radar rainfall field into an 8-levels multiplicative cascade with a Fast Fourier Transform.
The cascade is advected with optical flow in Lagrangian coordinates and stochasti-
cally evolves in time according to a hierarchy of auto-regressive processes of order 1
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(AR(1)) or 2 (AR(2)). This allows accounting for the empirical observation that the rate
of temporal evolution of precipitation features is a power law of the scale of the feature,
which is known as dynamic scaling (see e.g. Venugopal et al., 1999 and Mandapaka
et al., 2011). The nowcasting system STEPS estimates the rate of Lagrangian devel-
opment of the cascade levels in real-time, which allows adapting to the predictability of5

the observed sequence of radar images. This is necessary since the predictability of
precipitation exhibits a strong temporal variability as shown by Seed (2003), Germann
et al. (2006) and Seed et al. (2013).

Germann et al. (2006) also analyzed the geographical distribution of the predictability
of precipitation over the conterminous United States and found a region of longer life-10

times extending from eastern Nebraska to Lake Michigan through Iowa, Wisconsin and
northern Illinois. Berenguer and Sempere-Torres (2013) performed a similar analysis
using the European radar composite and discovered the predictability to be season-
ally dependent, with higher values over the central part of the UK, central continental
Europe and the Baltic regions. However, such geographical differences are strongly15

affected by the inhomogeneous quality of the European radar composite between the
different countries, which use different hardware, operating wavelength, scanning strat-
egy and signal processing (Huuskonen et al., 2014). The spatial heterogeneity of the
statistical properties of rainfall also poses issues for its multifractal simulation, which
traditionally assumes spatial homogeneity of the stochastic process. One way to avoid20

constructing complicated spatially heterogeneous models is to separately add a spa-
tial trend to correct a homogeneous multifractal model. This trend should account for
the spatial inhomogeneity of the long term climatological distribution of precipitation,
which is often controlled by the presence of orographic features (see e.g. Pathirana
and Herath, 2002; Badas et al., 2006).25

The climatology of precipitation over complex orography is strongly controlled by flow
direction and air stability (Panziera and Germann, 2010), which can also be exploited to
design analogue-based nowcasting techniques (Foresti et al., 2014). The contribution
of orography to the precipitation enhancement also seems to be a scale-dependent
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process. This can be observed by extracting features from a digital elevation model
(DEM) at different spatial scales and looking at the spatial distribution of persistent
precipitation cells. It appears that orographic features need a certain characteristic size
(scale) in order to control the spatial distribution of precipitation patterns (e.g. Foresti
et al., 2012).5

The goal of this study is to analyze the spatial distribution of the scale-dependent
Lagrangian predictability of precipitation under different flow regimes in connection with
the presence of orographic features. Data from the weather radar composite of eastern
Victoria, Australia, a 500km×500 km domain at 10 min temporal and 2km×2 km spatial
resolutions, covering the period from February 2011 to October 2012, are used for the10

analyses. A k-means clustering algorithm is employed to classify the velocity fields into
6 main flow regimes and to stratify the evaluation of statistics.

This research is an extension of the study of Foresti and Seed (2014), who analyzed
the geographical distribution of the STEPS nowcasting biases using the same radar
dataset in order to detect regions of systematic precipitation growth and decay. The15

typical areas of rainfall growth and decay due to orographic forcing are expected to
be seen also in the spatial distribution of the predictability of rainfall. The orographic
forcing is expected to control the spatial distribution of the predictability of precipitation
at the meso-gamma (2–20 km) and partly the meso-beta (20–200 km) scales, which
are smaller than the continental scales analyzed in the literature (e.g. Germann et al.,20

2006; Radhakrishna et al., 2014; Berenguer and Sempere-Torres, 2013).
The dependence of the dynamic scaling relationship on flow regimes is also studied

to test whether there are weather regimes that are more predictable than others. On
the other hand, the geographical distribution of the spatial power spectrum is analyzed
to explore the degree of spatial scaling of precipitation over the forecast domain. The25

findings of this study should increase our understanding of the predictability of pre-
cipitation by Lagrangian persistence, which is essential to improve its very-short term
forecasting, space-time stochastic simulation and statistical downscaling.
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The paper is structured as follows. Section 2 describes the radar rainfall dataset.
Section 3 details the methodology. Section 4 illustrates the obtained results and inter-
pretations, while Sect. 5 concludes the paper, discusses potential improvements and
future research perspectives.

2 Radar rainfall dataset5

Data from the weather radar composite of Eastern Victoria, Australia, were used for the
analyses (see Fig. 1 for the domain and the radar locations). The composite merges
data from 4 weather radars located at Melbourne (operating at S-band), Yarrawonga
(C-band), Gippsland (C-band) and Canberra-Captains Flat (S-band). The period under
analysis is from the 15 February 2011 to the 31 October 2012.10

The operational radar data processing chain for quantitative precipitation estimation
(QPE) at the Australian Bureau of Meteorology consists of the following steps:

– Ground clutter removal with Doppler filtering at the radar site.

– Additional ground clutter filtering based on a static clutter map and on the gradi-
ents of the vertical profile of reflectivity.15

– Beam blockage correction using a DEM to correct for the lost power due to the
interception of the radar beam with orography.

– Estimation of the vertical profile of reflectivity using data within a range of 50 km
from the radar.

– Interpolation of the volumetric data into constant altitude plan position indicators20

(CAPPI). CAPPIs are computed at a height of 1000 m using the 3-dimensional
anisotropic Kriging technique of Seed and Pegram (2001).

– Application of a different climatological Z–R relationship for stratiform and con-
vective rain based on the Steiner classification (Chumchean et al., 2008).
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– Compositing operation involving a linear combination of the radar measurements
in the overlapping regions as a function of distance from the radar.

– Mean field bias correction with respect to rain gauge measurements using
a Kalman filtering approach for its temporal update (Chumchean et al., 2006b).

The final product is a 256×256 grid with a spatial resolution of 2km×2 km and a tempo-5

ral resolution of 10 min in a Gnomonic projection. More details on the operational QPE
chain at the Australian Bureau of Meteorology are given in Chumchean et al. (2006a,
b, 2008) and Seed et al. (2007).

These pre-processing steps are not sufficient to completely remove the radar mea-
surement errors, especially over mountainous regions. The two sources of errors that10

are the most critical for the analysis of the precipitation predictability are the range
dependence of estimated rainfall rates and the reduced visibility in the inner Victo-
rian Alps. In addition, the compositing operation generates some discontinuities in the
regions of overlapping radar measurements. Rainfall could also be slightly underes-
timated in a radius of ∼ 20–30 km around the radar due to the excessive filtering of15

ground clutter, which also eliminates some precipitation measurements. Precipitation
is also underestimated at ranges exceeding 90–100 km due to the increasing beam
width (sampling volume), attenuation by rainfall and blockage by orographic features.
Hence, precipitation accumulations are strongly underestimated in the inner part of
the Victorian Alps where the correction for the vertical profile of reflectivity is evidently20

not sufficient to extrapolate the higher elevation measurements to the elevation of the
CAPPI.

3 Methodology

Section 3.1 explains the cascade decomposition framework for the analysis of the
scale-dependence of the predictability of precipitation. Section 3.2 details the method25

for estimating the Lagrangian temporal auto-correlation of precipitation, which is
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needed to evaluate its lifetime (Sect. 3.3). The simultaneous calculation of the La-
grangian auto-correlation at each point of the radar grid using rules for the online com-
putation of the covariance is presented in Sect. 3.4. Section 3.5 presents a simplified
approach to estimate the slope of the power spectrum from the variance of the cascade
levels under the scaling hypothesis. Finally, Sect. 3.6 provides a brief summary of the5

k-means stratification of optical flow fields.

3.1 Cascade decomposition framework

The radar rainfall field is decomposed using a Fast Fourier Transform into a multiplica-
tive cascade of the form (Seed, 2003; Bowler et al., 2006):

dBRi j =
K−1∑
k=0

Xkij for i = 1, . . . ,L and j = 1, . . . ,L, (1)10

where L = 384 is the size of the squared domain and K = 8 is the number of cascade
levels. A buffer of 64 pixels is added at each side of the original 256×256 grid trying
to reduce the edge effects arising from the FFT transformation, thus giving a larger
domain of 384×384 pixels. The cascade is multiplicative when rewritten in terms of
original rain rates R instead of the multiplicative decibel scale dBR. The cascade de-15

composition is achieved by applying a Gaussian band-pass filter to isolate a given set
of spatial scales in the frequency domain (Seed, 2003; see Fig. 2). Xk will be referred
to as cascade level and is obtained by applying an inverse FFT to the filtered data in
order to return the Fourier components back into the spatial domain. Thus, Xk rep-
resents the variability of the original radar field with spatial frequencies [km−1] in the20

range qk−1/L < ωk < qk+1/L, where ωk is the central frequency of the Gaussian filter
and q = 2.12 is the branching number (inverse of the scale reduction factor). Each level
of the cascade is normalized to zero mean and unit variance for convenience and the
normalization is kept constant in space and during the forecast period.
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Figure 2 illustrates the Gaussian band-pass filters which are used to isolate the spa-
tial scales composing the set of cascade levels. Given the size of the extended radar
domain, an 8-levels multiplicative cascade with the following spatial scales is obtained
(see Fig. 2): 768–362 km, 362-171-81 km, 171-81-38 km, 81-38-18 km, 38-18-8 km, 18-
8-4 km, 8-4-2 km and 4-2 km. The non-integer scales resulting from the non-integer5

branching number of 2.12 were rounded. The scales on which the Gaussian filters are
centered are marked in italic. The first and last levels of the cascade will not be con-
sidered in the analyses because not having a regular Gaussian shape. In addition, the
largest scale is not able to capture the appropriate scales since the radar composite
only covers a certain fraction of the 512km×512 km domain. This would lead to the10

underestimation of the precipitation lifetime at that scale (see Sect. 3.3).

3.2 Lagrangian temporal auto-correlation

The Lagrangian temporal auto-correlation is a measure for the rate of development
of precipitation in storm coordinates and consequently of its predictability (Zawadzki,
1973). An efficient way to follow the rainfall evolution in storm coordinates is to esti-15

mate a velocity field using a sequence of radar rainfall fields. STEPS uses an optical
flow algorithm (Bowler et al., 2004) for the estimation of the velocity field and a semi-
Lagrangian backward-in-time scheme for its advection, which keeps the velocity field
fixed and retrieves the rainfall values upstream by following the lines of the velocity field
(e.g. Germann and Zawadzki, 2002).20

The Lagrangian lag 1 temporal auto-correlations at each level of the cascade are
estimated as follows (Bowler et al., 2006):

1. Estimate the velocity field with optical flow using rainfall fields at time t−1 and t.

2. Decompose the radar rainfall field at time t−1 using FFT into a multiplicative
cascade.25
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3. Decompose the radar rainfall field at time t using FFT into a multiplicative cas-
cade.

4. Advect the cascade from time t−1 to time t. Note that each level of the cascade
is advected with the same velocity field computed on the original rainfall fields.

5. The lag 1 Lagrangian temporal auto-correlation is simply obtained by computing5

the correlation coefficient between each cascade level k advected from time t−1
to t and the corresponding cascade level at time t:

ρ1(k) =

1
L·L

L∑
i=1

L∑
j=1

(
Xkij −X k

)
·
(
X adv
kij −X

adv

k

)
√

1
L·L

L∑
i=1

L∑
j=1

(
Xkij −X k

)√
1
L·L

L∑
i=1

L∑
j=1

(
X adv
kij −X

adv

k

) for k = 0, . . . ,K −1, (2)

where L = 256 is the size of the radar domain and “adv” refers to the previous value
advected forward to the current time. The smaller are the correlation coefficients the10

higher the growth and decay of rainfall processes occurring in Lagrangian frame of
reference. The lag 2 Lagrangian temporal auto-correlation could be estimated as well
by advecting a cascade at time t−2 to time t, but is not presented in this paper.

Equation (2) is the ordinary Pearson’s correlation coefficient which involves the sub-
traction of the field mean. On the other hand, Zawadzki (1973) and Germann and15

Zawadzki (2002) employed a correlation estimation without subtraction of the mean for
estimating the decorrelation time of precipitation fields. The difference between the two
approaches is not very important over continental scales where the forecast and ob-
served fields have similar mean values. But, it may become an issue over smaller
domains, where the observed mean field precipitation can be significantly different20

than the forecast one (see e.g. Foresti et al., 2014). In such case, Eq. (2) would give
lower but more realistic correlation coefficients compared with Germann and Zawadzki
(2002).
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The Lagrangian auto-correlation estimations are also affected by the presence of
different scales of motion. A multiscale optical flow estimation at each level of the cas-
cade may be foreseen but could cause algorithm convergence issues when trying to
correlate the small scale features. Also, it is not yet clear how to avoid the appearance
of artifacts in the final reconstructed rainfall field when advecting the cascade levels5

with different velocity fields over several time steps.
Note that the correlation function of Eq. (2) is obtained by integrating over space, i.e.

over the total number of pixels L ·L within a radar image. This allows the Lagrangian
auto-correlation to be estimated in real-time and to adapt to the predictability of the
sequence of radar images. This approach, however, assumes the predictability to be10

homogeneous over the forecast domain. Section 3.4 will explain how to obtain esti-
mates of the Lagrangian auto-correlation by performing the summations through time,
which is a necessary step for analyzing its spatial distribution.

The hierarchy of Lagrangian temporal auto-correlations defines a hierarchy of auto-
regressive processes of order 1 (AR(1)). This is exploited by STEPS to stochastically15

simulate the rainfall growth and decay processes that occur in storm coordinates at dif-
ferent spatial scales to reproduce the dynamic scaling of the field (Seed, 2003; Bowler
et al., 2006). The procedure consists of blending the radar cascade with a cascade
of spatially and temporally correlated stochastic noise. The spatially correlated noise
field is generated using a power law filter while temporal correlations are maintained by20

a hierarchy of auto-regressive processes. The power law filter ensures that the noise
cascade has the same power spectrum of the observed radar rainfall fields. This tech-
nique was already employed to generate universal multifractals (Schertzer and Lovejoy,
1987) and also appeared in the nowcasting system SBMcast (Berenguer et al., 2011)
based upon the “String of Beads” model of Pegram and Clothier (2001a). The stochas-25

tic simulations are stationary and no attempt is done to actually forecast temporal
trends in growth and decay of precipitation. Indeed, trying to predict growth and decay
processes using as predictor the past evolution of radar precipitation does not seem
to significantly improve the forecast accuracy, except for the regions characterized by

7743

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 7733–7771, 2014

The effect of flow and
orography on the

spatial distribution of
the predictability of

rainfall

L. Foresti and A. Seed

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

systematic orographic forcing (see a review in Foresti and Seed, 2014). In addition,
Radhakrishna et al. (2013) showed that the predictability of growth and decay patterns
is ten times shorter than the one of precipitation fields and is limited to spatial scales
of the order of 250km×250 km, which would require continental scale radar images to
be studied properly. The stochastic simulations are not presented in this paper but only5

explained for completeness since they are based upon the Lagrangian auto-correlation
coefficients.

3.3 Estimation of the precipitation lifetime

By knowing the lag 1 auto-correlation coefficient, the AR(1) auto-correlation function
(ACF) can be recursively derived as follows:10

ρ(t) = ρt
1 for t = 1, ...,T , (3)

where ρ1 is the lag 1 Lagrangian auto-correlation coefficient computed with Eq. (2) and
T is the maximum time lag (sufficiently large to allow convergence of the ACF). Note
that this simplification indirectly assumes that the diagnosed velocity field does not
change during the forecast period. In fact, it extrapolates the whole ACF only knowing15

the lag 1 auto-correlation. This assumption is reasonable up to 2–3 h (Germann et al.,
2005) and 3–4 h lead times (Bowler et al., 2006) since using the correct velocity does
not reduce much the forecast errors. A complete study of the Lagrangian predictability
of precipitation including the non-stationarity of the velocity field would involve the direct
calculation of the correlation coefficients at each forecast lead time by comparing the20

forecasts to the observations (see Germann and Zawadzki, 2002). The basic principle
of STEPS is to actually estimate the Lagrangian ACF in real-time and allow it to adapt to
the predictability of the situation. It would be computationally intensive to estimate the
complete ACF using a few hours of radar fields before the analysis time. Eventually, the
predictability of the field would be representative of the previous hours and not of the25

last two or three rainfall fields. The adaptability of the system is particularly important
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for example when the field is rapidly evolving from a convective to a stratiform situation
or in the early stages of a new rainfall event.

Finally, the lifetime of precipitation (decorrelation time) can be evaluated by integrat-
ing the ACF over time (Zawadzki, 1973; Germann and Zawadzki, 2002):

LT =

∞∫
0

ρ(t)dt. (4)5

For an exponentially decaying ACF the lifetime is defined as the time at which the ACF
falls below the value 1/e = 0.37 (Zawadzki, 1973). Instead of using this threshold, the
lifetime was obtained by numerical integration of Eq. (4) using the extended Simpson’s
rule (Press et al., 2007).

3.4 Online collection of rainfall statistics10

Instead of analyzing the temporal distribution of the Lagrangian auto-correlation by in-
tegrating the data over space, we want to analyze its spatial distribution by integrating
over time. More precisely, the summations of Eq. (2) need to be done over the number
of radar images in the archive, not the number of pixels within a radar image. A joint
evaluation of the summations at each pixel in a radar field is intractable as it would15

require loading all the rainfall fields into the computer memory to compute the correla-
tions in a single pass. An efficient way to overcome this issue is to exploit rules for the
online computation of the mean, the variance and the covariance (Knuth, 1998). The
online estimation of the mean is obtained as follows:

xt+1 = xt +δ/N, (5)20

where t is the iteration, xt+1 is the new mean, δ = xt+1 −xt is the residual contribution
of the new sample xt+1 to the old mean xt and N is the number of samples.

The online estimation of the variance is obtained similarly as follows:

qt+1 = qt +δ
(
xt+1 −xt+1

)
, (6)

7745

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 7733–7771, 2014

The effect of flow and
orography on the

spatial distribution of
the predictability of

rainfall

L. Foresti and A. Seed

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where q is the squared sum of the differences of x from its mean and δ = xt+1 −xt.
The variance is obtained offline by dividing q by the number of samples N.

The online computation of the AR(1) Lagrangian temporal auto-correlation is evalu-
ated by keeping track of the sum of squared residuals:

st+1 = st +
(
xadv
t+1 −x

adv
t

)
·
(
xt+1 −xt+1

)
. (7)5

The Lagrangian auto-correlation is obtained offline as:

ρ(x,xadv) =
s

N
√

Var(x) ·Var(xadv)
. (8)

The technical implementation of the online update of the field statistics is performed by
keeping binary files containing the arrays of interim statistics. For each new radar field,
the old file is read, updated and rewritten with the new statistics. The statistics are only10

updated when the rainfall fraction exceeds 5 % over the radar composite and when
the 4 radars are jointly operating. With this criterion we obtained 9578 valid rainfall
fields, which roughly correspond to 1600 h of precipitation over the period spanning
from February 2011 to October 2012.

3.5 Offline spectral slope estimation15

A precipitation field that is scale-invariant (also referred to as scaling) typically exhibits
a power spectrum of the form:

P (f ) ∝ f −β, (9)

where f is the spatial frequency [km−1] and β is the scaling exponent (the slope of the
power spectrum). The power law behavior of rainfall fields usually appears as a straight20

line on a graph of the logarithm of the power against the logarithm of the spatial fre-
quency. The slope of the line measures the degree of scaling of the field and is equal
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to 0 for an unstructured white noise field. The scaling exponent of a 2-dimensional rain-
fall field is often greater than 2, which complicates its multifractal simulation (see e.g.
Schertzer and Lovejoy, 1987). One possibility to simulate stochastic rainfall fields to
obtain β > 2 is to apply a power law filter to a field of white noise as briefly mentioned
in Sect. 3.2.5

Radar rainfall fields often deviate from the theoretical framework of perfect scale-
invariance and typically show a scaling break at frequencies of 15–20 km−1 (see e.g.
Gires et al., 2011; Seed et al., 2013). On the other hand, precipitation fields computed
by NWP models have a break around 40–50 km (e.g. Gires et al., 2011). The scaling
break is observed as an increase in the spectral slope at the smaller convective scales.10

This seems to have a physical origin and could be attributed to different scaling regimes
of the large scale stratiform rainfall and the small scale convective scales. However, the
presence of zeros in the field could also explain this phase transition, which also affects
the estimation of universal multifractal parameters (Gires et al., 2012). The presence
of a scaling break requires using two spectral slopes β1 and β2 for the study and15

parametrization of the power spectrum. β1 accounts for wavelengths that are larger
than 15–40 km while β2 for wavelengths that are lower than 15–40 km.

In this research we analyze the spatial distribution of the spectral slopes β1 and β2.
A complete analysis would require visiting each radar pixel and performing a local spa-
tial FFT decomposition in its neighborhood, which is very computationally demanding20

if one wants to repeat the analysis over a long period of time. Instead, the two spectral
slopes are derived offline from the spatial distribution of the variance at each level of the
cascade. This can be achieved by assuming scaling of the variance of the cascade lev-
els (see Menabde et al., 1997). It consists of evaluating the average slope increments
between successive levels of the cascade level standard deviations:25

H = − 1
K −1

K−1∑
k=1

log10

(
sd(Xkij )

sd(X(k+1)i j )

)
log10(q)

and β = 2H +2, (10)
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where sd(Xkij ) is the standard deviation of cascade level k at pixel i j . β1 is estimated
using levels 1 to 3 (scales of 171, 81 and 38 km, K = 3 in Eq. 10) while β2 using levels
3 to 6 (scales of 38, 18, 8 and 4 km; K = 4 in Eq. 10). A scaling break of 40 km instead
of 20 km was chosen to obtain smoother fields of the spectral exponent β2, which is
consequently slightly underestimated.5

Note that this approach is different than estimating power spectra on rainfall time
series and analyzing the spatial distribution of the spectral exponents. The approach
proposed in this paper should give insights into the spatial heterogeneity of the degree
of spatial scaling of rainfall fields.

3.6 k-means stratification of optical flow fields10

To analyze the dependence of rainfall statistics on flow regimes, the optical flow fields
were stratified using the k-means clustering algorithm. The details on the preparation
of the archive of optical flow fields and the clustering algorithm can be found in Foresti
and Seed (2014).

Table 1 summarizes the statistics of the 6 cluster centers obtained after running15

the k-means algorithm on the archive of flow fields. The cluster centers mainly differ in
terms of flow direction and magnitude, while the spatial variability of the velocity vectors
within a field is only marginal (see Foresti and Seed, 2014). The number of clusters
was empirically chosen to represent a sufficient number of flow regimes and to have
enough samples per cluster to compute significant verification statistics. The cluster 0 is20

characterized by weak southeasterly winds, the cluster 1 by moderate westerly winds,
the cluster 2 by moderate northerlies, the cluster 3 by moderate southwesterly winds,
the cluster 4 by strong northwesterly winds and the cluster 5 by strong westerlies. It is
understood that winds refer to the apparent motion of radar images derived with optical
flow and not to real wind fields.25

The online update of the statistics (Sect. 3.4) is performed by keeping a set of 6
binary files containing the interim fields of the rainfall mean, variance, Lagrangian
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auto-correlations and number of samples. The files are read, updated and rewritten
according to the cluster membership of a given field.

4 Results

Section 4.1 illustrates the scale-dependent geographical distribution of the precipitation
lifetime without stratification into flow regimes. On the other hand, Sect. 4.2 shows5

the flow-dependence of the dynamic and spatial scaling relationships by averaging the
results over space. Finally, Sect. 4.3 analyzes the spatial distribution of the precipitation
lifetime under different flow regimes to understand the effect of orographic forcing.

4.1 Geographical distribution of precipitation predictability and spatial scaling

Figure 3 illustrates the spatial distribution of the precipitation lifetime for the cascade10

levels 2, 3, 4 and 5 without stratification into flow regimes. Refer to Fig. 1 for geograph-
ical details. The level 0 is not presented since the FFT filter does not have a Gaussian
shape (see Fig. 2). On the other hand, the level 1 is too influenced by the edge effects
that propagate from the borders of the radar composite towards the interior regions.
The levels 6 and 7 are too noisy and exhibit lifetimes that are below the temporal reso-15

lution of the radar composite (10 min).
The cascade level 2 (171-81-38 km, Fig. 3a) has lifetimes comprised between 5 and

10 h but still highlights the presence of some edge effects. The long lifetimes obtained
may still be a consequence of assuming the diagnosed velocity field to be temporally
stationary. An important part of the spatial variability at this scale is affected by the20

shape of the radar composite and long lifetimes tend to be located in its central parts.
The other cascade levels (Fig. 3b–d) are less affected by the edge effects, which remain
limited to a small region close to the borders of the radar composite. All of them have
the longest lifetimes over the flat regions surrounding the Yarrawonga radar. In this
region the lifetimes are up to 3.5 h, 70 min and 30 min for the 81-38-18 km, 38-18-8 km25
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and 18-8-4 km scales respectively. These long lifetimes can be explained by a higher
Lagrangian predictability over flat continental areas (see for instance Germann et al.,
2006). The lifetimes around the Macedon ranges are lower on their Southeast flanks
in the direction of the Melbourne radar compared with their Northwest flanks. Despite
being less pronounced, this pattern was already observed in Foresti and Seed (2014)5

and is a consequence of the prevailing westerly flows, which cause systematic rainfall
decay on the leeward side of the Macedon ranges and orographic enhancement on
their windward side. This effect is also the origin of the long lifetimes observed on the
Dandenong ranges since being located upwind relative to the prevailing westerlies. The
lifetimes surrounding the Gippsland radar tend to be longer over the Ocean, which is10

particularly visible in Fig. 3b and c. Finally, the shorter lifetimes on the inner parts of the
Victorian Alps are probably due to the reduced accuracy of the radar measurements
(see Sect. 2).

Figure 4 illustrates the spatial distribution of the spectral slopes β1 and β2 derived
from the standard deviation of the cascade levels (see Sect. 3.5). β1 represents the15

degree of scaling above the 40 km scale while β2 below it and therefore account re-
spectively for the large scale precipitation structures and convective features. Except
for the regions close to the radar domain edges, β1 is generally larger than 2 with the
highest values oscillating around 2.2–2.4 and centered on the three radars. These are
the regions where the spatial scaling of rainfall can be measured more efficiently and20

is the highest. At first sight, these inhomogeneities can only be explained by the shape
of the radar composite and not by the presence of different atmospheric processes.
However, the spectral slopes are higher on the southern slope of the Alps around the
Gippsland radar. This depicts a region characterized by rainfall fields that are highly
organized in space with convection embedded into stratiform rainfall, which is typical25

of orographic rainfall (see Fig. 6a). It would be interesting to perform a similar anal-
ysis using outputs from NWP models to eliminate the heterogeneities introduced by
the inhomogeneous quality of radar measurements. As expected, the spectral slopes
at the small scales (β2, Fig. 4b) are systematically higher than the ones at the large

7750

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/7733/2014/hessd-11-7733-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 7733–7771, 2014

The effect of flow and
orography on the

spatial distribution of
the predictability of

rainfall

L. Foresti and A. Seed

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

scales (β1, Fig. 4a), with values in the range 2.3–2.8. However, the spectral slope β2
is lower in the surroundings of the Melbourne radar (S-band) compared with the other
two (C-band). This is probably due to the S-band radar not being able to measure
the very small scale variability of precipitation with the same resolution of the C-band
radars. Consequently, the cascade around the S-band radar contains more power at5

the smallest cascade level, which seemingly causes a decrease of the spectral slope
β2. Despite these differences, the spectral exponents β2 tend to be lower upwind than
upstream of the mountain ranges, in particular over the Yarra and Dandenong ranges,
the southern slopes of the Alps between Avon and the Snowy River as well as on the
northern slopes of the Alps located southeast of the Yarrawonga radar. This depicts that10

strong convection is more likely to occur over flat regions than over complex orography,
where it is less intense and often embedded into stratiform rainfall.

4.2 Flow-dependence of the dynamic and spatial scaling relationships

Table 2 and Fig. 5 illustrate the dynamic scaling relationship between the spatial scale
and the precipitation lifetime for each flow regime. As already explained in Sect. 3.1,15

only the cascade levels 1 to 6 are shown. The values are obtained by spatial averaging
of the lifetimes within the radar composite. Figure 5 demonstrates the presence of dy-
namic scaling, which is observed as a clear power law relationship between the spatial
scale of precipitation features and its estimated lifetime (Venugopal et al., 1999; Seed,
2003). It is worth mentioning that Venugopal et al. (1999) employed another statistical20

quantity to account for the temporal evolution of rainfall and the obtained dynamic scal-
ing exponents cannot be directly compared. The figure also shows significant variability
of the lifetimes as a function of flow regime. The clusters NW and Ws are characterized
by the shortest lifetimes, while the cluster SE by the longest. These differences are in
part due to the type of rainfall, which is more convective under northerly than southerly25

flows. In fact, the convective activity is mostly driven by warm continental northwesterly
flows when they meet the colder maritime air. On the other hand, it is not clear whether
the faster translational speed of convective rain relative to stratiform rain affects the
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estimation of the predictability by Lagrangian persistence. These lifetime estimations
are a bit higher than the original ones of Seed (2003), who used a single motion vector
to advect the radar rainfall field. Similar issues were encountered by Pegram and Cloth-
ier (2001b) because of using a single displacement vector and as a consequence of the
high level of noise at the pixel scale. This demonstrates the added value of the optical5

flow algorithm of Bowler et al. (2004), which better defines the differential motion within
a rainfall field, as well as the analysis of the Lagrangian predictability at larger scales
using the Fourier-based scale decomposition. The estimations also compare well with
the results of Germann et al. (2006), who reported lifetimes of 0.1–0.2 h on the 4–8 km
scale using a wavelet decomposition of the rainfall field over continental United States.10

In Fig. 5 the 4–8 km scales roughly correspond to the 8-4-2 km and 18-8-4 scales,
which exhibit lifetimes of 0.1–0.4 h.

To obtain an order of magnitude for the predictability at smaller spatial scales, power
law relationships were fitted using the method of least squares per each flow cluster.
The extrapolation of the fitted power laws towards smaller scales can give an idea of15

the predictability that could be expected from higher spatial and temporal resolutions
X-band weather radars, which are increasingly popular for precipitation observation
and very-short term forecasting at urban scales (e.g. Goormans and Willems, 2013;
Ruzanski and Chandrasekar, 2012). The bottom of Table 2 shows the results of such
extrapolations for scales of 1.89-0.89-0.42, 0.89-0.42-0.20 and 0.42-0.20-0.09 km. Be-20

cause of working on a logarithmic scale such estimations are quite uncertain and at
a certain degree pessimistic, in particular because the dynamic scaling relationship
does not perfectly follow a power law. The imperfect dynamic scaling could also be
due to using the lifetime instead of the temporal rainfall changes as a measure for the
rainfall evolution (see Venugopal et al., 1999). It must also be considered that the op-25

tical flow is representative of the scales measured by the C- and S-band radars and
cannot capture the motion at smaller scales. From this simple extrapolation, the kilo-
metric scale (1.89-0.89-0.42 km) only displays a predictability of 40–80 s, which may
question the utility of X-band radars for very-short term forecasting. In fact, the typical
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resolution of X-band radars is of the order of 100m×100 m in space and 1 min in time.
From Table 2 it is seems that X-band radars should have a much higher temporal sam-
pling frequency to obtain reliable estimates of the small scale Lagrangian predictability
of rainfall. This will also pose the computational challenge of generating the nowcasts
before the predictability limits have been exceeded to avoid the forecasts becoming ob-5

solete. These interpretations are of course not valid for the observation of precipitation,
for which X-band radars clearly give increased spatial detail relative to C-band radars.
To our knowledge there are no comprehensive studies on the scale-dependence of
the predictability of rainfall by Lagrangian persistence employing X-band radar data.
Ruzanski and Chandrasekar (2012) reported a predictability of 20 min using data from10

a network of X-band radars. The scale-dependence was analyzed by upscaling the
forecasts and the values are not directly comparable to the ones obtained by scale
separation within STEPS.

Table 3 illustrates the spectral slopes β1 and β2 of the spatial power spectrum strat-
ified by flow regime. β1 typically oscillates around the dimension of the field with the15

smallest values occurring under the flows SE–SW (1.88–1.91) and the largest under
the flows Wm, N and NW (2.01–2.03). The values are slightly smaller than the ones
found in the literature (e.g. Seed et al., 2013), which is explained again by the pres-
ence of edge effects which locally reduce the spectral exponents (see Fig. 4a). This
may have consequences on the power law filtering performed by STEPS to generate20

the noise cascade needed to update the hierarchy of auto-regressive processes. In
fact, the filtering uses the spatial power spectrum of rainfall as target distribution, which
does not account for the spatial heterogeneities within the forecast domain.

The values of β2 are significantly higher and oscillate between 2.45 and 2.8. The
clusters NW and Ws have the highest β2 (2.68–2.79), which can be attributed to25

a higher convective activity occurring under these flow conditions. The cluster NW also
has a high β1 and can be classified as the one having the most organized rainfall
structures from the large down to the small convective scales.
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4.3 Effect of orography on the predictability of precipitation

According to the results of Berenguer and Sempere-Torres (2013), the predictability of
precipitation seems to be connected with the regions with the highest rainfall accumu-
lations. In fact, the regions that are often affected by organized large scale precipitation
systems are more likely to exhibit higher predictability than the ones with infrequent5

isolated convection. It is therefore important to analyze the climatology of precipitation
to study the spatial distribution of its predictability.

Figure 6 shows the conditional mean 10 min rainfall accumulations stratified by flow
regime. It clearly illustrates the flow dependence of the spatial distribution of precipi-
tation, which is mostly located on the windward side of mountain ranges. Most of the10

precipitation occurring under southeasterly flows is located along the upwind side of the
Victorian Alps in a region going from Avon to the Snowy River (Fig. 6a). The spatial dis-
tribution of rainfall under moderate westerly flows presents maxima on the Dandenong
and Macedon ranges, but also on the northern side of the Alps around Mount Buffalo
(Fig. 6b). The enhancement on the Northwest flank of the Alps is much more pro-15

nounced with northerly and northwesterly flows, which approach the mountain range
more perpendicularly (Fig. 6c and e respectively). Southwesterly flows lead to high ac-
cumulations on the Yarra and Dandenong ranges as well as the southern side of the
Alps around the Gippsland radar (Fig. 6d). It is interesting to note that northwesterly
flows also give high accumulations on the leeside of the Alps (Fig. 6e), which could20

be caused by the reduced air stability of these conditions (refer to Foresti and Seed,
2014, for a more detailed interpretation). Finally, strong westerly flows lead again to
high accumulations on the Dandenong and Macedon ranges, but also on the West
of the Gippsland radar (Fig. 6f). A clear rainfall shadow effect on the leeside of the
Macedon ranges is noticed for the clusters Wm, NW and Ws. It would have been more25

difficult to interpret it as a real atmospheric process if it were located on the windward
side of the mountain range. In fact, it could have been a consequence of the blocked
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radar beams and higher elevation measurements, thus leading to the underestimation
of precipitation by the radar.

Figure 7 shows the spatial distribution of the precipitation lifetime at the convective
scale (38-18-8 km) stratified by flow cluster. Despite some variability arising from peri-
odic features of the Fourier transform, it is possible to notice that lifetimes are higher5

on the upwind side and lower on the downwind side of terrain features. An illustra-
tive example can be observed under southwesterly conditions (Fig. 7d). The lifetime
of precipitation upstream of the Dandenong ranges is about 20–40 min, it increases to
50–70 min on the upwind side and falls again to 20–30 min when moving into the Alps.
Similar patterns can be observed under the flow regime Ws (Fig. 7f). On the other10

hand, under NW flows short lifetimes are located on the leeward side of the Macedon
ranges (Fig. 7e). Note that with reversed flow conditions (SE, Fig. 7a), this region ex-
hibits lifetimes of 80–100 min and the shortest ones are located on top of the Macedon
ranges with values oscillating between 40 and 80 min. The region located south and
southeast of the Yarrawonga radar is also interesting to analyze in particular for the15

clusters N and NW. In fact, the location of the longest lifetimes upstream of the Alps is
different depending on flow direction (Fig. 7c and e). The plains surrounding the Yarra-
wonga radar also show very long lifetimes under flow conditions SE, Wm, and SW.
However, this effect could be an artefact of the low rainfall accumulations over these
regions (see Fig. 6a, b and d).20

These findings corroborate the results of Harris et al. (1996), who demonstrated that
the precipitation intermittency is higher upstream compared with the top of the moun-
tain ridge, with intermediate values on the upwind flank. From Fig. 7 it seems that the
decreased intermittency of rainfall upwind of orographic features has a positive impact
on its predictability by Lagrangian persistence. Leeside precipitation enhancement is25

also possible due to leeside flow convergence, flow perturbations by mountain grav-
ity waves or the presence of cold air pools that force the unstable air to rise. Such
processes are not very frequent and would require stratifying the statistics using more
complex criteria based upon moist air stability indices among others.
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The relationship between the precipitation lifetime and orography is less pronounced
than the one of nowcast biases presented in Foresti and Seed (2014). This is mostly
due to the increased difficulty in computing higher order statistics, which require many
more samples than a simple linear or multiplicative bias. Also, the cascade decom-
position framework still needs some improvements to reduce the edge effects and to5

better interpret the intricate statistical dependencies between consecutive cascade lev-
els (see Seed et al., 2013).

5 Conclusions

The geographical distribution of the scale-dependent predictability of precipitation by
Lagrangian extrapolation of radar images was analyzed under different flow regimes in10

connection with the presence of orographic features. Data from the Victorian radar
composite, Australia, a 500km×500 km domain covering the period from Febru-
ary 2011 to October 2012, were used for the analyses. The scale-dependence of the
predictability of precipitation was considered by decomposing the radar rainfall field
into a multiplicative cascade using a Fast Fourier Transform (Bowler et al., 2006). The15

lifetime of precipitation features was found to be a power law function of the scale of
the features and to depend on flow direction, which confirms the presence of dynamic
scaling (Venugopal et al., 1999; Mandapaka et al., 2009). The precipitation lifetime was
found up to a factor two higher on the upwind compared with the downwind slopes of
orographic features and to be strongly flow-dependent. The degree of spatial scaling20

of the rainfall field was also shown to be spatially inhomogeneous. These spatial het-
erogeneities due to orographic forcing can be exploited to locally adapt the space-time
stochastic simulation of precipitation, which is needed for very-short term forecasting
(e.g. Seed et al., 2013), design storm studies (e.g. Paschalis et al., 2013) and precipi-
tation downscaling (e.g. Pathirana and Herath, 2002).25

The study raised several methodological questions, in particular because the qual-
ity of radar data is much more homogeneous over time than space. This has to be
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accounted for when interpreting the maps of the predictability of precipitation. Some
patterns could be simply due to the geographical biases that affect the radar mea-
surements, for example due to beam blockage, signal attenuation, increasing sampling
volume with range, etc. Nevertheless, in the regions close to the radar, it was possi-
ble to detect a clear signal in the distribution of the precipitation lifetime, which was5

attributed to orographic forcing.
The predictability estimates presented in this paper are affected by other sources

of uncertainty. The first is related to the assumption of the temporal stationarity of the
diagnosed velocity field, which leads to too optimistic estimates of the precipitation life-
times, especially at the large scales. The second arises from the uncertainty in the10

estimation of the velocity field with optical flow. In fact, precipitation fields often show
differential motion at different spatial scales. An illustrative example occurs when sta-
tionary orographic rainfall contains fast moving cellular convection (e.g. Foresti et al.,
2014). Better estimates of the Lagrangian predictability would require the optical flow
to be estimated on each spatial scale separately, which may be problematic due to the15

low cross-correlation that is expected at the small scales.
Finally, it is not yet clear whether the spatial variability of precipitation lifetime is

more significant than its temporal variability and how to account for both aspects in
the real-time nowcasting of precipitation using stochastic simulation approaches such
as STEPS. The natural solution would be to allow the predictability to vary through20

time in a first stage and to gradually add some spatial heterogeneity when more and
more radar data are collected. This goal could be achieved by exploiting the online
computation of statistics, which would enable the nowcasting system to learn about
the spatial distribution of predictability as more and more radar data are collected and
analyzed.25
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Table 1. Characteristics of the 6 flow cluster centers which are used to stratify the statistics.
Wm and Ws refer to moderate and strong westerly flows respectively. The detailed average
velocity maps can be found in Foresti and Seed (2014).

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

Average flow direction Southeast West North Southwest Northwest West
Average flow magnitude (km h−1) 8.2 17.2 21.3 21.9 40.0 37.5
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Table 2. Precipitation lifetimes for each spatial scale and flow regime averaged over the radar
composite. Levels 0–3 are expressed in hours and 4–7 in minutes. The power law extrapolation
of lifetimes for smaller spatial scales is given in seconds. Ext.: estimation of the lifetimes at
smaller spatial scales by extrapolating the power law. The extrapolation uses the original non-
integer scales for increased precision.

Level Spatial scales cluster 0 cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 Weighted
[km] SE Ww N SW NW Ws average

0 768–362 27.7 25.9 28.5 25.4 19.3 20.2 24.1 h
1 362-171-81 24.9 21.4 18.6 22.5 14.6 16.0 19.2 h
2 171-81-38 13.7 8.9 7.9 9.6 5.6 6.3 8.3 h
3 81-38-18 4.6 2.8 2.5 3.1 1.8 2.0 2.7 h
4 38-18-8 79.6 53.9 48.9 56.3 34.4 38.7 49.8 min
5 18-8-4 26.4 21.0 19.2 20.5 14.0 15.7 19.0 min
6 8-4-2 10.5 9.2 8.5 8.7 6.4 7.31 8.3 min
7 4-2 5.9 5.0 5.2 5.4 4.7 5.0 5.1 min

ext. 8 1.89-0.89-0.42 78 65 62 58 43 49 58.0 s
ext. 9 0.89-0.42-0.20 28 23 23 16 16 18 20.5 s
ext. 10 0.42-0.20-0.09 10 8 8 5 6 7 7.4 s

Nr. of fields 1095 2390 1449 1112 2058 1474 9578
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Table 3. Average spatial spectral exponents stratified by flow regime. The standard deviation
over space is given within brackets.

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

β1 1.88 (0.29) 2.02 (0.24) 2.03 (0.25) 1.91 (0.22) 2.03 (0.24) 1.96 (0.23)
β2 2.46 (0.20) 2.55 (0.15) 2.61 (0.18) 2.46 (0.19) 2.79 (0.16) 2.68 (0.18)
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Figure 1. Radar composite of Eastern Victoria, Australia, overlaid on the digital elevation model.
Triangles denote the locations of the three radars at Melbourne, Yarrawonga and Gippsland. In
the top-right corner of the domain there is some contribution from the Canberra radar. White
tones represent the Ocean.
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Figure 2. The set of 8 Gaussian band-pass filters used to isolate the spatial frequencies com-
posing the cascade levels. The total magnitude for a given spatial frequency is normalized to
one.
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Figure 3. Spatial distribution of the precipitation lifetimes for the 4 middle cascade levels.
(a) 171-81-38 km, (b) 81-38-18 km, (c) 38-18-8 and (d) 18-8-4 km. White tones are used for
regions outside of the radar domain or presenting values that exceed the range of the color
scale.
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Figure 4. Spatial distribution of the spectral slopes (a) β1 and (b) β2 derived by assuming the
scaling of the standard deviation of the cascade levels.
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Figure 5. Dynamic scaling relationship between the spatial scale and precipitation lifetime strat-
ified by flow regime. The equations of the power law fits are shown in the upper left corner.
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Figure 6. Conditional mean 10 min rainfall accumulations for flow regimes (a) SE, (b) Wm,
(c) N, (d) SW, (e) NW and (f) Ws.
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Figure 7. Spatial distribution of the precipitation lifetime at cascade level 4 (38-18-8 km) strati-
fied by flow regime. (a) SE, (b) Wm, (c) N, (d) SW, (e) NW, (f) Ws.
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